You are here: Home DIAPOD

DIAPOD

About DIAPOD

Overview

Copepod species of the genus Calanus are rice grain-sized crustaceans, distant relatives of crabs and lobsters, that occur throughout the Arctic Ocean consuming enormous quantities of microscopic algae (phytoplankton). These tiny animals represent the primary food source for many Arctic fish, seabirds and whales. During early spring they gorge on extensive seasonal blooms of diatoms, fat-rich phytoplankton that proliferate both beneath the sea ice and in the open ocean. This allows Calanus to rapidly obtain sufficient fat to survive during the many months of food scarcity during the Arctic winter. Diatoms also produce one of the main marine omega-3 polyunsaturated fatty acids that Calanus require to successfully survive and reproduce in the frozen Arctic waters.

Calanus seasonally migrate into deeper waters to save energy and reduce their losses to predation in an overwintering process called diapause that is fuelled entirely by carbon-rich fat (lipids). This vertical 'lipid pump' transfers vast quantities of carbon into the ocean's interior and ultimately represents the draw-down of atmospheric carbon dioxide (CO2), an important process within the global carbon cycle. Continued global warming throughout the 21st century is expected to exert a strong influence on the timing, magnitude and spatial distribution of diatom productivity in the Arctic Ocean. Little is known about how Calanus will respond to these changes, making it difficult to understand how the wider Arctic ecosystem and its biogeochemistry will be affected by climate change.

The overarching goal of this proposal is to develop a predictive understanding of how Calanus in the Arctic will be affected by future climate change.

We will achieve this goal through five main areas of research:

  1. We will synthesise past datasets of Calanus in the Arctic alongside satellite-derived data on primary production. This undertaking will examine whether smaller, more temperate species have been increasingly colonising of Arctic. Furthermore, it will consider how the timing of life-cycle events may have changed over past decades and between different Arctic regions. The resulting data will be used to validate modelling efforts.
  2. We will conduct field based experiments to examine how climate-driven changes in the quantity and omega-3 content of phytoplankton will affect crucial features of the Calanus life-cycle, including reproduction and lipid storage for diapause. Cutting-edge techniques will investigate how and why Calanus use stored fats to reproduce in the absence of food. The new understanding gained will be used to produce numerical models of Calanus' life cycle for future forecasting.
  3. The research programme will develop life-cycle models of Calanus and simulate present day distribution patterns, the timing of life-cycle events, and the quantities of stored lipid (body condition), over large areas of the Arctic. These projections will be compared to historical data.
  4. We will investigate how the omega-3 fatty acid content of Calanus is affected by the food environment and in turn dictates patterns of their diapause- and reproductive success. Reproductive strategies differ between the different species of Calanus and this approach provides a powerful means by which to predict how each species will be impacted, allowing us to identify the winners and losers under various scenarios of future environmental changes.

The project synthesis will draw upon previous all elements of the proposal to generate new numerical models of Calanus and how the food environment influences their reproductive strategy and hence capacity for survival in a changing Arctic Ocean. This will allow us to explore how the productivity and biogeochemistry of the Arctic Ocean will change in the future. These models will be interfaced with the UK's Earth System Model that directly feeds into international efforts to understand global feedbacks to climate change.

Funding information

This project is funded by the Natural Environment Research Council.... to a total value of £

Objectives

Objectives

The overarching objective of the research is to develop a predictive understanding of sentinel biological taxa in the Arctic and how these key functional groups are likely to be impacted by the many simultaneous effects of ice loss and warming. The central hypothesis is that future change in the distribution, productivity, and condition of calanoid copepods, a crucial trophic link between primary production and a wide array of fish, bird, and mammal predators, will be driven not by total primary production per se but by changes in the production patterns of lipid-rich diatoms in particular; and that impacts of changing diatom production on the copepods will have major knock-on consequences for carbon export as well as the food web.

Specific objectives include

  1. New understanding of the effect of prey quality and composition on Calanus growth/ingestion, synthesized into a numerical model parameterisation suitable for large-scale simulations. We will examine how the abundance and composition of the microplankton prey influences metabolism and reproduction in Calanus. By comparing the demands for C, nitrogen (N) and other essential compounds required for egg production, such as PUFAs, to those supplied via ingestion and/or from maternal reserves, and after accounting for the efficiencies with which they can be utilised, we will identify the growth limiting substrate. Improved understanding of lipid-based metabolism in fueling reproduction will enable us to better understand and predict how Calanus overwinter survival and overall production depends on their highly changeable prey field.
  2. Mechanistic understanding of limits on the northward expansion of subarctic copepods (C. finmarchicus), and the controls on range expansion and contraction of Arctic-associated copepods (C. glacialis, C. hyperboreus). Numerical model ensembles comprising multiple oceanographic models as well as complementary population-level and community-level Calanus models will be built and refined using new field and laboratory datasets, and then analysed in mechanistic terms in what will be the broadest Arctic-zooplankton model intercomparison project to date. The results will include both new process understanding and specific recipes for population and community models ready for coupling to the UK Earth System Model (UKESM1) and parallel ocean-modelling efforts in the US and Norway.
  3. Predictive capability for overall changes in prey abundance, quality, and timing for Calanus' predators. Model hindcasts and projections will be combined with a broad synthesis of historical observational time series on Arctic Calanus from both the Atlantic and Pacific sectors, as well as satellite-derived phytoplankton-quality indices extending ~20 years. The result will be a summary view of changes in Calanus total production, Calanus size structure, Calanus lipid content (which varies by species and life strategy), and the extent to which trends in these factors reinforce or compensate for each other from the point of view of predators dependent on large, high-lipid zooplankton prey.

Team

Team

Diapod is lead and coordinated by Professor David Pond from SAMS.

 
Contact us
SAMS
Scottish Marine Institute
Oban, Argyll, PA37 1QA
T: 01631 559000
F: 01631 559001
E: info@sams.ac.uk

sams-youtube.jpg